Trong việc phát triển ứng dụng AI, các nhà khoa học dữ liệu cần phát triển những mô hình thống kê có khả năng phát hiện, chống trả những nỗ lực đánh lừa AI. Phạm vi tấn công của một mô hình AI có thể rất rộng lớn và khó hiểu. Những lỗ hổng trong mạng nơ-ron sâu nếu bị phát hiện và lợi dụng có thể khiến tổ chức gặp nguy hiểm. Khả năng tấn công các mạng nơ-ron sâu càng ngày càng tăng lên. Các nghiên cứu đã cho thấy khá nhiều trường hợp mạng nơ-ron sâu bị tấn công phá hoại. Phần lớn các công trình nghiên cứu tập trung vào khả năng sửa đổi hình ảnh không thể phát hiện, khiến các thuật toán máy tính nhận nhầm hoặc phân loại nhầm hình ảnh. Kẻ tấn công có thể thành công ngay cả khi chúng không biết mạng nơ-ron được xây dựng như thế nào. Những sửa đổi với mục đích phá hoại có thể cực kỳ nhỏ và khó phát hiện nhưng tác hại của chúng gây ra không hề nhỏ. Ứng dụng AI có thể đưa ra quyết định sai khi bị đánh lừa, chẳng hạn như khi hiểu nhầm biển báo giao thông và chuyển hướng sai dẫn đến tai nạn. Tùy phần lớn những kiểu tấn công giả lập được thực hiện trong môi trường thí nghiệm có kiểm soát chứ không phải những ứng dụng AI triển khai trên thực tế, nhưng chúng rất có khả năng bị tội phạm, khủng bố lợi dụng.
Các nhà phát triển AI cần tuân thủ những hướng dẫn sau để phòng chống khả năng bị lợi dụng:
Trường hợp lý tưởng nhất là các nhà khoa học dữ liệu có được các công cụ chống đánh lừa tinh vi để giúp họ áp dụng những phương thức thực hành tốt nhất trong toàn bộ quá trình phát triển và vận hành AI. Theo hướng đó, IBM vừa công bố Adversarial Robustness Toolbox tại hội thảo RSA Conference hàng năm. Đây là bộ công cụ nguồn mở đầu tiên bao gồm các kiểu tấn công, các biện pháp phòng chống và các phép đo cho:
Bộ công cụ này được phát triển trong các phòng thí nghiệm của IBM ở Dublin, Ireland, bằng ngôn ngữ Python, là nguồn mở và có thể làm việc với các mô hình nơ-ron sâu. Phiên bản đầu tiên hỗ trợ TensorFlow và Keras, các phiên bản sau có thể sẽ hỗ trợ PyTorch và MXNet. Các biện pháp phòng chống trong bộ công cụ có có thể được đào tạo trên Fabric for Deep Learning mà IBM mới công bố hoặc qua IBM Deep Learning as a Service trong Watson Studio. Các nhà phát triển có thể truy cập mã nguồn của bộ công cụ qua ART GitHub.
Hiện tại, các thư viện của bộ công cụ chỉ hỗ trợ phòng chống đánh lừa cho một kiểu mạng nơ-ron sâu là những loại mô hình nhận dạng và phân loại hình ảnh. Bộ công cụ bao gồm nhiều kiểu tấn công khác nhau như Deep Fool, Fast Gradient Method, Jacobian Saliency Map. Các phiên bản trong tương lai sẽ hỗ trợ các mạng nơ-ron sâu được thiết kế để xử lý giọng nói, văn bản và dữ liệu chuỗi thời gian.
Các thư viện của bộ công cụ chủ yếu phòng chống những tấn công mà dữ liệu đánh lừa được đưa vào trong quá trình vận hành mô hình. Tuy nhiên, các biện pháp phòng chống kiểu tấn công “đầu độc”, trong đó, dữ liệu đào tạo bị chỉnh sửa ngay từ giai đoạn phát triển mô hình sẽ được cung cấp trong những phiên bản tiếp theo.
Nguyễn Anh Tuấn
Lược dịch siliconangle.com
14:00 | 28/03/2018
16:00 | 26/05/2021
11:00 | 22/03/2021
10:00 | 12/11/2018
08:00 | 04/04/2019
09:00 | 13/03/2018
09:00 | 02/02/2018
13:00 | 02/12/2024
Trí tuệ nhân tạo (AI) đang ngày càng phát triển và được áp dụng trong nhiều lĩnh vực của đời sống. Thậm chí đối với những lĩnh vực đòi hỏi trình độ cao của con người như lập trình hay bảo mật, AI cũng đang chứng minh khả năng vượt trội của mình. Với sự trợ giúp của AI, Google đã phát hiện một lỗ hổng bảo mật tồn tại hơn 20 năm trong dự án phần mềm mã nguồn mở được sử dụng rộng rãi.
10:00 | 25/11/2024
Tấn công chuỗi cung ứng phần mềm là hình thức tấn công mạng nhằm vào việc phân phối phần mềm hoặc nhà cung cấp dịch vụ trong chuỗi cung ứng kỹ thuật số của doanh nghiệp, gây tác động trên diện rộng và tổn hại lớn đến danh tiếng của doanh nghiệp. Để bảo vệ chuỗi cung ứng trong thời đại số, bài viết này sẽ cung cấp 6 biện pháp giúp doanh nghiệp giảm thiểu các rủi ro và củng cố chuỗi cung ứng trước hình thức tấn công này.
13:00 | 28/08/2024
Ngày nay, tin tức về các vụ vi phạm dữ liệu cá nhân trên không gian mạng không còn là vấn đề mới, ít gặp. Vậy làm thế nào để dữ liệu cá nhân của bạn không bị rơi vào tay kẻ xấu? Dưới đây là 6 cách để bảo vệ thông tin cá nhân khi trực tuyến.
11:00 | 13/05/2024
Trong lĩnh vực chữ ký số, lược đồ ký số dựa trên đường cong Elliptic (ECDSA) được đánh giá là một trong những lược đồ chữ ký số có độ an toàn cao, dù ra đời sau nhưng ECDSA đang dần được thay thế cho lược đồ ký số RSA. Bài báo này tập trung giới thiệu lược đồ ECDSA, ứng dụng của ECDSA trong thực tế và các tham số an toàn được khuyến nghị dùng cho ECDSA.
Trong bối cảnh chuyển đổi số và ứng dụng rộng rãi của công nghệ thông tin (CNTT) thì xu hướng kết nối liên mạng để chia sẻ cơ sở dữ liệu (CSDL) trở nên tất yếu. Các hệ thống công nghệ vận hành (Operational Technology - OT) cũng không nằm ngoài xu hướng này, quá trình đó được gọi là Hội tụ IT/OT. Do vậy, nhu cầu truyền dữ liệu một chiều giữa các mạng độc lập ngày càng tăng để phục vụ cho mục đích khai thác dữ liệu. Bài viết này giới thiệu một giải pháp mới dựa trên công nghệ vi mạch tích hợp khả trình (Field-Programmable Gate Array - FPGA), sử dụng cơ chế xử lý đa luồng tốc độ cao, giúp duy trì băng thông hệ thống mà không gây ra tình trạng treo hoặc nghẽn mạng, cho phép các kết nối yêu cầu thời gian thực. Đồng thời, bài viết cũng sẽ trình bày giải pháp giả lập giao thức TCP/IP hỗ trợ cho các giao thức truyền thông trong các hệ thống mạng điều khiển IT/OT.
09:00 | 06/01/2025
Điện thoại di động ngày nay không chỉ là thiết bị liên lạc mà còn là "kho chứa thông tin" cá nhân quan trọng như dữ liệu tài khoản ngân hàng, hình ảnh, email và các ứng dụng mạng xã hội. Vì vậy, việc mất điện thoại hoặc bị đánh cắp không chỉ gây thiệt hại về vật chất mà còn đe dọa nghiêm trọng đến bảo mật thông tin cá nhân của chủ sở hữu thiết bị. Bài viết dưới đây sẽ cung cấp hướng dẫn chi tiết về cách bảo vệ dữ liệu trong tình huống này.
14:00 | 10/03/2025