Hiện các tổ chức đã có một số phương pháp mà họ có thể áp dụng cho trí tuệ nhân tạo và dữ liệu lớn. Thực tiễn này được thể hiện trong các chính sách và quy trình CNTT có thể được điều chỉnh cho cả trí tuệ nhân tạo và dữ liệu lớn. Tất cả đều hữu ích vào thời điểm các công ty kiểm toán chuyên nghiệp cung cấp các dịch vụ trí tuệ nhân tạo và dữ liệu lớn còn hạn chế.
Dưới đây là 9 lưu ý và cách mà các tổ chức/doanh nghiệp có thể sử dụng để tự kiểm tra trí tuệ nhân tạo và dữ liệu lớn của họ:
Các tổ chức có được dữ liệu của riêng họ từ hoạt động kinh doanh, nhưng họ cũng mua và sử dụng nhiều dữ liệu từ các nhà cung cấp bên ngoài cho trí tuệ nhân tạo và phân tích. Tất cả dữ liệu từ bên ngoài cần được đánh giá về độ tin cậy và chất lượng trước khi được sử dụng trong trí tuệ nhân tạo và phân tích.
Các tổ chức có thể có các thỏa thuận và quy tắc bảo mật dữ liệu của riêng mình với khách hàng, nhưng quyền riêng tư dữ liệu này sẽ không được đảm bảo khi chúng được mở rộng cho các đối tác kinh doanh bên ngoài, có thể không có cùng tiêu chuẩn về quyền riêng tư dữ liệu. Trong những trường hợp này, cần có các chính sách và thủ tục về quyền riêng tư của dữ liệu không chỉ trong CNTT mà còn trong các bộ phận pháp lý và tuân thủ của công ty để đảm bảo rằng, khách hàng có thể sử dụng, ẩn danh hoặc chia sẻ dữ liệu của họ.
Các thiết bị IoT sẽ ngày càng đóng góp dữ liệu phi cấu trúc lớn cho hệ thống CNTT. Bởi vì những thiết bị này là thiết bị di động và được phân phối, chúng có thể dễ dàng bị mất, bị xâm phạm hoặc thất lạc. Tối thiểu, cần phải có cách theo dõi các thiết bị này và việc sử dụng chúng, đồng thời khóa chúng khi chúng được báo cáo là bị mất hoặc thất lạc.
Nhiều thiết bị IoT, cũng như bộ định tuyến và trung tâm, đi kèm với cài đặt bảo mật mặc định từ nhà cung cấp của họ không phù hợp với các tiêu chuẩn bảo mật của tổ chức. Nó cần là một phần của quy trình cài đặt, trong đó nên bao gồm một bước cài đặt bảo mật mặc định được kiểm tra và sau đó là cài đặt bảo mật doanh nghiệp trước khi chúng được triển khai.
Cần có mức độ dọn dẹp dữ liệu thích hợp, có thể liên quan đến việc loại bỏ dữ liệu, chuẩn hóa dữ liệu, các công cụ ETL (trích xuất, biến đổi, tải),... phải có sẵn để sử dụng. Điều này nhằm đảm bảo rằng dữ liệu đi vào hệ thống phân tích trí tuệ nhân tạo của tổ chức luôn sạch sẽ và chính xác nhất có thể.
Các thuật toán và dữ liệu được sử dụng trong các hệ thống trí tuệ nhân tạo liên tục thay đổi để các giả định về trí tuệ nhân tạo là đúng ngày hôm nay có thể không còn tồn tại cho ngày mai. Trí tuệ nhân tạo cũng có thể kết hợp các thành kiến không được phát hiện ngay lập tức. Do đó, quá trình giám sát và sửa đổi các thuật toán, truy vấn và dữ liệu trí tuệ nhân tạo phải liên tục. Cần có quy trình trí tuệ nhân tạo để thường xuyên điều chỉnh dữ liệu và hoạt động của trí tuệ nhân tạo.
Tất cả các kho lưu trữ dữ liệu lớn, hệ thống phân tích và trí tuệ nhân tạo phải được giám sát 24/7 để đảm bảo rằng chỉ những người dùng được phép sử dụng dữ liệu và hệ thống mới được truy cập chúng.
Tối thiểu hàng năm, các hệ thống trí tuệ nhân tạo phải được đánh giá để xác nhận rằng chúng đang đáp ứng các yêu cầu của các tổ chức. Nếu không, chúng nên được sửa đổi hoặc loại bỏ.
Nếu các hoạt động của trí tuệ nhân tạo được đưa vào các quy trình kinh doanh, thì kế hoạch khắc phục thảm họa của các tổ chức cần phải giải quyết được vấn đề ngay cả khi hệ thống này không thể hoạt động được. Nếu một hệ thống gặp phải thời gian chết thì cần phải có một hệ thống sao lưu nhanh chóng trực tuyến, hay một tập hợp các thủ tục thủ công (các nhân viên biết cách thực hiện chúng) có thể tiếp quản cho đến khi hệ thống trí tuệ nhân tạo hoạt động trở lại. Doanh nghiệp có thể trì hoãn được các quyết định mà trí tuệ nhân tạo đưa ra cho đến khi hệ thống hoạt động trở lại. Các thủ tục về thời gian ngừng hoạt động phải được liệt kê rõ ràng cho cả CNTT và doanh nghiệp cuối.
Trần Thanh Tùng
09:00 | 12/04/2021
09:00 | 30/11/2021
11:00 | 09/04/2021
08:00 | 11/11/2020
14:00 | 07/06/2021
14:00 | 07/06/2021
07:00 | 08/04/2024
Thiết bị truyền dữ liệu một chiều Datadiode có ý nghĩa quan trọng trong việc bảo đảm an toàn thông tin (ATTT) cho việc kết nối liên thông giữa các vùng mạng với nhau, đặc biệt giữa vùng mạng riêng, nội bộ với các vùng mạng bên ngoài kém an toàn hơn. Khi chủ trương xây dựng Chính phủ điện tử, Chính phủ số của Quân đội được quan tâm, đẩy mạnh phát triển. Việc liên thông các mạng với nhau, giữa mạng trong và mạng ngoài, giữa mạng truyền số liệu quân sự (TSLQS) và mạng Internet, giữa các hệ thống thông tin quân sự và cơ sở dữ liệu (CSDL) quốc gia về dân cư, bảo hiểm y tế và các CSDL dùng chung khác yêu cầu phải kết nối. Bài báo sẽ trình bày giải pháp truyền dữ liệu một chiều Datadiode cho phép các ứng dụng giữa hai vùng mạng kết nối sử dụng giao thức Webservice/RestAPI.
09:00 | 13/02/2024
Trong bối cảnh an ninh mạng ngày càng phát triển, các tổ chức liên tục phải đấu tranh với một loạt mối đe dọa trên môi trường mạng ngày càng phức tạp. Các phương pháp an toàn, an ninh mạng truyền thống thường sử dụng các biện pháp bảo vệ thống nhất trên các hệ thống đang tỏ ra kém hiệu quả trước các hình thái tấn công ngày càng đa dạng. Điều này đặt ra một bài toán cần có sự thay đổi mô hình bảo vệ theo hướng chiến lược, phù hợp và hiệu quả hơn thông qua việc Quản lý rủi ro bề mặt tấn công (Attack Surface Risk Management - ASRM).
08:00 | 25/01/2024
Tháng 12/2023, các nhà nghiên cứu của hãng bảo mật Fortinet xác định được ba gói độc hại mới trong kho lưu trữ nguồn mở Python Package Index (PyPI) có khả năng triển khai tệp thực thi CoinMiner để khai thác tiền điện tử trên các thiết bị Linux bị ảnh hưởng. Các nhà nghiên cứu cho rằng các chỉ số xâm phạm (IoC) của các gói này có điểm tương đồng với gói PyPI Culturestreak được phát hiện vào đầu tháng 9/2023. Bài viết này sẽ phân tích các giai đoạn tấn công của ba gói PyPI độc hại này, trong đó tập trung vào những điểm tương đồng và sự phát triển của chúng so với gói Culturestreak.
09:00 | 24/11/2023
Bằng chứng không tiết lộ tri thức (Zero-Knowledge Proofs - ZKP) là một dạng kỹ thuật mật mã được công bố từ thập niên 90 của thế kỷ trước, công nghệ mật mã này cho phép xác minh tính xác thực của một phần thông tin mà không tiết lộ chính thông tin đó. Tuy nhiên, trong những năm gần đây ZKP mới được đưa vào ứng dụng nhiều trong hệ thống công nghệ thông tin. Bài viết này sẽ trình bày chi tiết về khái niệm, tính chất, cách thức phân loại và một số ứng dụng phổ biến của ZKP trong an toàn thông tin.
Trong thời đại ngày nay, cùng với sự phát triển của khoa học kỹ thuật có ngày càng nhiều những cuộc tấn công vào phần cứng và gây ra nhiều hậu quả nghiêm trọng. So với các loại tấn công khác, tấn công qua kênh kề đang được nghiên cứu do khả năng khôi phục lại khóa bí mật trong khi hệ thống vẫn hoạt động bình thường mà không hề làm thay đổi phần cứng. Bài báo này sẽ trình bày một cách sơ lược về những kết quả cuộc tấn công kênh kề lên mã hóa RSA cài đặt trên điện thoại thông minh sử dụng hệ điều hành Android tại Viện Khoa học - Công nghệ mật mã. Nhóm tác giả đã tấn công khôi phục được một phần khóa bí mật của mã hóa RSA cài đặt trên điện thoại thông minh và chứng minh khả năng rò rỉ thông tin qua kênh kề.
14:00 | 11/09/2024
Cùng với sự phát triển của công nghệ, tội phạm mạng đang gia tăng thủ đoạn sử dụng video, hình ảnh ghép mặt người quen cùng với giọng nói đã được ghi âm sẵn (deepfake) với mục đích tạo niềm tin, khiến nạn nhân tin tưởng và chuyển tiền cho thủ phạm nhằm lừa đảo chiếm đoạt tài sản. Bài báo sau đây sẽ thông tin đến độc giả về cách nhận biết và đưa ra những biện pháp phòng tránh và giảm thiểu trước các cuộc tấn công lừa đảo sử dụng công nghệ Deepfake.
16:00 | 13/09/2024